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ABSTRACT

It has become customary to calibrate a camera-projector pair in a structured light (SL) system as a stereo-vision
setup. The 3D reconstruction is carried out by triangulation from the detected point at the camera sensor and
its correspondence at the projector DMD. There are several formulations to obtain the coordinates of the 3D
point, especially in the presence of noise. However, it is not clear what is the best triangulation approach. In this
study, we aimed to determine the most suitable triangulation method for SL systems in terms of accuracy and
execution time. We assess different strategies in which both coordinates in the projector are known (point-point
correspondence) and the case in which only the one coordinate in the DMD is known (point-line correspondence).
We also introduce the idea of estimating the second projector coordinate with epipolar constraints. We carried
out simulations and experiments to evaluate the differences between the triangulation methods, considering the
phase-depth sensitivity of the system. Our results show that under suboptimal phase-depth sensitivity conditions,
the triangulation method does influence the overall accuracy. Therefore, the system should be arranged for
optimal phase-depth sensitivity so that any triangulation method ensures the same accuracy.
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1. INTRODUCTION

The calibration of a 3D structured light (SL) system is the single-most-important aspect when converting from
phase to x, y, z Cartesian coordinates .1 In general, there are two approaches for calibrating an SL system:
1) the reference-plane approach,2 or 2) the stereo-vision method.3 The former breaks down in non-telecentric
systems due to the effects of magnification. In contrast, the latter is used more often due to its flexibility and
ease of calibration.4

In the stereo-vision method, the camera and the projector are modeled using the pinhole model, which has
been used in the computer vision community for several decades.5 However, there is a unique aspect of SL
systems compared to passive stereo systems: the phase-depth sensitivity. It has been shown that the geometry
of the SL setup and the orientation of the projected fringes play an essential role in achieving maximum phase-
depth sensitivity.6–8 Therefore, the triangulation of a point X in space depends on solving a system of equations
to obtain its 3D coordinates. However, there are several ways to solve the triangulation problem. Hence, we ask
if all of these methods lead to the same result. Alternatively, how can we interpret differences in the triangulation
results from different methods?

In the following sections, we briefly explain the theory behind triangulation in SL systems using the stereo-
vision method, the different triangulation methods, and the experiments we conducted to test the differences
in the methods. Encouraging preliminary results show that there are, in fact, differences in the results of the
triangulation methods related to the phase-depth sensitivity of an SL system. In the following, we show these
results and our discussion.
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2. THEORY

2.1 Stereo Vision Calibration

In the stereo-vision model, the camera-projector system is considered as a binocular framework by regarding the
projector as the inverse of a camera.3 Considering a homogeneous 3D point X = [Xw, Y w, Zw, 1]T in the world
coordinate system, we find its corresponding coordinate xc = [uc, vc, 1]T in the camera and xp = [up, vp, 1]T in
the projector system using the following equations,

scxc = Kc Mc
w Xw , (1)

spxp = Kp Mp
w Xw , (2)

where sc and sp are scaling factors,

Kc =

f c
u 0 ccu
0 f c

v ccv
0 0 1

 , Kp =

fp
u 0 cpu
0 fp

v cpv
0 0 1

 , (3)

are the intrinsic matrices, where fu and fv denote the effective focal lengths along u and v directions; (cu, cv) is
the coordinate of the principal point, and the superscripts c and p denote the parameters corresponding to the
camera and projector, respectively. The matrices Mc

w and Mp
w represent a rigid transformation from the world

coordinate system to the camera and the projector frames, respectively. Usually, the world frame is aligned with
the camera frame and the transformation matrices Mc

w and Mp
w are defined as

Mc
w =

1 0 0 0
0 1 0 0
0 0 1 0

 , (4)

and
Mp

w = Mp
c = [R t], (5)

where Mp
c is a transformation matrix from camera to projector coordinate system, composed of a rotation

matrix R and a translation vector t. It is also usual to define Pc = Kc Mc
w as the camera projection matrix,

and Pp = Kp Mp
w as the projector projection matrix, where both of them are 4× 4 matrices.

2.2 Lens Distortion

The presence of lens distortions of the SL system generate inaccuracies in the 3D reconstruction.9–11 In practice,
the camera and projector lenses have nonlinear distortions, which can be modeled as[
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with

r2 = ū2 + v̄2 , (7)

where [k1, k2, k3] are the radial distortion coefficients and [p1, p2] are the tangential distortion parameters.
[ud, vd]T refer to the distorted points, and [ū, v̄]T are the normalized coordinates which can be calculated asūv̄

1

 = K−1

uv
1

 . (8)



2.3 Phase-Depth Sensitivity

In recent years, many works have been carried out to obtain systems with higher performance and greater
accuracy by optimizing the projected patterns or by optimizing the calibration parameters involved in the SL
systems.12–15 One of the most important parameters to improve the system performance is the phase-depth
sensitivity, which is mainly affected by the geometry of the system and the direction and shape of the projected
fringe patterns.

Wang and Zhang6 developed an experimental procedure to obtain a fringe projection angle to increase the
system’s sensitivity. The fringe pattern may be rotated digitally or physically by adjusting the geometry of
the system. Later, Zhou et al.,7 showed mathematically that for a camera-projector configuration, the highest
sensitivity of the system is achieved when the direction of the fringes is perpendicular to the camera-projector
baseline. Furthermore, Zhang et al.8 analyzed the sensitivity of the system along the observation field with
fringe patterns of different directions using epipolar geometry, finding that the sensitivity of the system in each
pixel depends on the angle between the fringe direction and the epipolar line. The best sensitivity is achieved
when the fringes and the epipolar line form an angle of 90◦, so that the optimal fringe pattern should be circular
and centered on the epipole.

3. METHOD

The most used triangulation approach is the plane-line triangulation method.3 In this method, we use both uc

and vc camera coordinates (equivalent to a line in 3D space) and one coordinate in the projector, either up or
vp (equivalent to a plane in 3D space). In the computer vision literature, there are more triangulation strategies
available for stereo-vision systems. The homogeneous (DLT), inhomogeneous, and optimal methods, are line-line
triangulation approaches discussed in more detail in Ref. 5.

Here, we compare the traditional plane-line triangulation approach, with the line-line methods available in
the literature, in terms of accuracy and execution time. We also consider lens distortion correction in both
camera and projector. Note that both u and v coordinates are needed in the distortion model given by Eq. (6).
The camera points can always be compensated for lens distortion. However, for the projector points, we need to
project in both u and v directions. This limitation can be a problem in high-speed applications where typically
patterns are only projected in one direction. Thus, we introduce the idea to estimate the second coordinate in
the projector by using epipolar constraints with the epipolar line.

As a result, we evaluate the triangulation methods under three scenarios. 1) Projecting in both directions to
obtain up and vp, as shown in Fig. 1(a). This procedure allows for correcting lens distortions in the projector.
2) The most common scenario where we have only up or vp in the projector by projecting in one direction.
This scenario only allows us to use the plane-line triangulation approach and no lens distortions correction in the
projector. 3) Here we measure one projector coordinate by projecting in one direction, and the other is estimated
with the epipolar line. An example is shown in Fig. 1(b) where vertical patterns are projected, allowing us to
estimate the up coordinate. The vp coordinate is estimated by calculating the intersection between the phase
line and the epipolar line. Hence, we can correct the projector lens distortions, and use the line-line methods in
addition to the plane-line method.

3.1 Triangulation methods

We consider four triangulation methods: Plane-line, Homogeneous (DLT), Inhomogeneous, and Optimal trian-
gulation. The plane-line only requires the (uc, vc) and up or vp coordinates. The DLT, inhomogeneous and
optimal require both (uc, vc) and (up, vp) coordinates.

3.1.1 Plane-line method

For this approach, we solve for a 3D point X̃ in Euclidean coordinates, and we only need a 2D coordinate from
the projector. The 3D point is estimated with the following systemP c
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Figure 1. The two options to obtain the projector coordinates for triangulation and lens distortion correction. (a) By
projecting vertical and horizontal fringes and mapping the phase values to pixel values. (b) By projecting fringes in one
direction and finding the point as the intersection between the phase line and the epipolar line.

where we have three equations and three unknowns. Eq. (9) is an example of solving the system with the up

coordinates. Moreover, because we only need one projector coordinate, this method is equivalent to a plane-line
triangulation, as shown in Fig. 2(a).

This system can be solved through matrix inverse, where for N 3D points, we have to solve N times Eq. (9)
making this process time-consuming. But unlike the above, because we have the same number of unknowns and
equations, we can use a closed-form solution to this problem

X = Zūc , (10)

Y = Zv̄c , (11)

Z =
tx − tzū

p

(r31ūp − r11)ūc + (r32ūp − r12)v̄c + (r33ūp − r13)
, (12)

where ūc and v̄c are the normalized camera coordinates, and ūp is the normalized projector up coordinate, which
can be estimated with the inverse of the intrinsic matrix as in Eq. (8). In this way, for N 3D points, we can use
vector operations to find the solution faster than the matrix inverse approach.

3.1.2 Homogeneous (DLT) method

The DLT method is the triangulation approach implemented in the OpenCV library. In this method, we solve
for a 3D point X in a homogeneous space using both up and vp coordinates, as shown in Fig. 2(b). Here we have
a system of four unknowns and four equations,

P c
31u

c − P c
11 P c

32u
c − P c

12 P c
33u

c − P c
13 P c

34u
c − P c

14

P c
31v

c − P c
21 P c

32v
c − P c

22 P c
33v

c − P c
23 P c

34v
c − P c

24

P p
31u

p − P p
11 P p

32u
p − P p

12 P p
33u

p − P p
13 P p

34u
p − P p

14

P p
31v

p − P p
21 P p

32v
p − P p

22 P p
33v

p − P p
23 P p

34v
p − P p

24



X1

X2

X3

X4

 =


0
0
0
0

 , (13)

and the solution X can be estimated through singular value decomposition (SVD) under the condition ||X|| = 1.
Thus, for N 3D points, we need to solve N times the Eq. 13.

3.1.3 Inhomogenous method

For this method (Fig. 2(c)), we solve for an inhomogeneous 3D point X̃ in the Euclidean space. We need both
up and vp coordinates, and we find the solution with the system
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Figure 2. The four evaluated triangulation methods. (a) Plane-line. (b) Homogeneous (DLT). (c) Inhomogeneous.
(d) Optimal triangulation.

where there are three unknowns and four equations. In this method, we need to estimate a least-square solution,
which can be calculated with the matrix pseudoinverse, and this implies that for N 3D points, we need to solve
N times the Eq. (14).

3.1.4 Optimal method

Unlike the previous methods, the optimal triangulation method is a non-linear triangulation approach robust
to noisy correspondences that do not satisfy the epipolar constraint. In this strategy, we enforce the epipolar
constraint between camera-projector matches with the cost function

C(x̂c, x̂p) = ‖xc − x̂c‖2 + ‖xp − x̂p‖2 , subject to x̂pTFx̂c = 0 , (15)

where x̂c and x̂p are close to the measured points xc and xp as is shown in Fig. 2(d), and they satisfy the epipolar
constraint x̂pTFx̂c = 0 exactly.

After optimization, we can triangulate using the optimized matches and any linear triangulation approach
(the three previously discussed methods). In this work, we combined the optimized correspondences with the
DLT triangulation. Furthermore, note that this strategy has a high computational complexity because we need
to find a solution to the cost function for each pair of 2D points.

3.2 Simulations and experiments

We evaluate the different triangulation methods via simulations and experiments, considering the three scenarios
described above. We also consider the influence of phase-depth sensitivity on the triangulation methods.

For the simulations, we measured an ideal plane with the camera and the projector. We evaluated each
method’s accuracy with the RMS deviation of the point cloud to the least-squares fitted plane. Moreover,
we included lens distortions. To establish the camera-projector matches, we calculate a 3D point given by
the intersection between the back-projected line of each camera pixel and the ideal plane, as shown in Fig. 3.
Afterward, these 3D points are projected into the projector sensor, and we add white Gaussian noise to the
2D image coordinates. Therefore, we have pixel-subpixel correspondence pairs as in an experimental camera-
projector setup.

For the experiments, we evaluated the triangulation methods using the same RMS metric as in the simula-
tions. We used two geometric configurations: 1) a suboptimal configuration, and 2) an optimal configuration.
Configuration 1 is a typical camera-projector setup that is not set at the maximum phase-depth sensitivity. Con-
figuration 2 is a phase-depth sensitivity optimized camera-projector setup, where we obtain high phase-depth
sensitivity by projecting along the main projection axis, and it has a poor sensitivity by projecting patterns in
the other direction.



Figure 3. Procedure for establishing correspondences in the simulations. The 3D point of the intersection between the
back-projected line and the ideal plane is projected onto the projector image plane and white Gaussian noise is added to
it.

4. RESULTS

4.1 Triangulation error and phase-sensitivity analysis

We carried out a simulation experiment to evaluate the relation between phase-depth sensitivity and the RMS
deviation under the different triangulation methods. As the sensitivity is related to the phase projection angle,
to simulate the fringe angle, we rotate the projector system around the (Z-axis) optical axis, as in Ref. 7. Thus,
for the same plane, we estimate each method’s RMS value for each fringe angle. The results are shown in Fig. 4.

The conventional approach, where we measure one coordinate and triangulate with the plane-line method,
gives the worst results. It is expected because we cannot correct for the projector lens distortions without
estimating the other coordinate. Note that, unlike the previous case where we only use one projector coordinate
(the solid magenta line), there are no differences between the triangulation methods when the projection angle
is close to the direction of maximum sensitivity (near 0◦). Conversely, when the projection angle is far from the
maximum sensitivity direction, there are noticeable differences between the triangulation methods.

The plot also shows that all the line-line triangulation methods have similar performance when measuring
both projector coordinates. A similar performance also occurs with the line-line methods in the case of measuring
one coordinate and estimating the other. There are no differences between the DLT, the inhomogeneous, and
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Figure 4. Simulation results of phase-sensitivity and triangulation method error analysis. There are no differences between
the triangulation methods when the projection angle is close to the direction of maximum sensitivity (near 0◦).



the optimal triangulation methods. Something similar occurs for the plane-line triangulation when measuring
both up and vp, and when measuring one direction and estimating the other with the epipolar line. We obtain
the best results in the scenario where we measure both projector coordinates and triangulate with a line-line
method. The second-best performance is obtained by triangulating with the plane-line method, regardless of
measuring both coordinates or measuring one and estimating the other. Triangulating with the line-line methods
by measuring one coordinate and estimating the other, gives us the third-best performance.

4.2 Experimental results

For the experiments, we used the two configurations previously described. In both systems, we measure a plane
in five different poses to evaluate the triangulation methods under the three scenarios by projecting vertical and
horizontal patterns. The RMS error results for one of the poses from configuration 1 are shown in Table 1. We
can see a similar behavior to Fig. 4. Note that in this configuration, the angle between the main projection
direction and the baseline is 10.97◦, that is, the system is 10.97◦ far from the optimal projection direction. As
we expected measuring only the up coordinate gives poor results. When measuring up and vp coordinates, the
results agree with the simulations, where the plane-line method gives slightly worse results. The last case where
we measure up by projecting vertical patterns and estimate the vp coordinates with the epipolar line, the results
also agree with the simulations.

Method Using up and vp Using only up Using up and estimating vp

Plane-line 0.261421 0.438151 0.260987
DLT 0.245759 - 0.271300

Inhomogeneous 0.246052 - 0.271082
Optimal 0.245738 - 0.271348

Table 1. Experimental RMS results of a plane pose with configuration 1.

In Fig. 5, we plotted the RMS values obtained from each reconstructed plane under the three scenarios and
using the four compared methods. The line-line methods using up and vp give better results with the lower RMS
values. The plane-line method using up and vp, and using up and estimating vp with the epipolar line, gives the
second-best results. The third-best results are obtained with the line-line methods using up and estimating vp.
This behavior is the same as in the simulation results shown in Fig. 4.
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For configuration 2, the RMS results for one of the poses of the measured plane are shown in Table 2. We
see that the differences between the triangulation methods are even closer than configuration 1. This result
is because this configuration is optimized in terms of phase-depth sensitivity. The angle between the main
projection axis and the projector-camera baseline is 3.25◦, i.e., the main projection axis is closer to the baseline
than configuration 1.

Method Using up and vp Using only up Using up and estimating vp

Plane-line 0.225723 0.461107 0.226448
DLT 0.222843 - 0.222954

Inhomogeneous 0.222861 - 0.223520
Optimal 0.222788 - 0.222812

Table 2. Experimental RMS results of a plane pose with configuration 2.

The RMS results for all the poses are shown in Fig. 6. As expected from the simulations, the differences
between the methods are smaller than the results from configuration 1. This behavior agrees with the simulation
results, where near the optimal projection direction, the difference between the methods becomes negligible.
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Figure 6. Experimental results of the five measured planes with configuration 2.

4.3 Time execution assessment

To evaluate the run time execution of each method, we reconstructed a total of 1310720 points 10 times with
each triangulation approach. These points are from an experimental plane measured by projecting vertical and
horizontal patterns. The average time for each run is shown in Fig. 7. The plane-line method outperforms the
line-line methods because of the closed-form solution available with this method. The plane-line mean execution
time is 0.5515 s. The mean execution time of the DLT and the Inhomogeneous methods are very similar, but the
DLT method is slightly faster. The optimal method takes much longer compared to the other methods because
of the additional minimization procedure.

5. CONCLUSION

In this work, we showed that although the phase-depth sensitivity plays a significant role in the accuracy of an
SL system, the triangulation method also influences the overall accuracy. In general, triangulating by measuring
both projector coordinates and using a line-line method, along with correcting for lens distortions, ensures the
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Figure 7. Mean execution time of the methods, reconstructing 1310720 points 10 times.

maximum accuracy that a system can achieve under a given phase-depth sensitivity. Furthermore, the plane-line
triangulation method (with lens distortion correction) achieves the same accuracy regardless of how the other
projector coordinate is obtained, i.e., through epipolar constraint or by projecting along the other direction. The
epipolar constraint may prove useful in high-speed applications, in which a reduced number of projected patterns
is desired.

If we manage to arrange an SL system with optimal phase-depth sensitivity, then any triangulation method
should yield approximately the same accuracy, which should be considered when designing SL systems. Finally,
having ensured an optimal configuration, the plane-line triangulation method with lens distortion correction
offers the same accuracy as the other line-line triangulation methods and is the least computationally expensive.
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