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Recent methods for phase unwrapping in the presence of noise include denoising algorithms to filter
out noise as a pre-processing stage. However, including a denoising stage increases the overall computa-
tional complexity resulting in long execution times. In this paper, we present a non-iterative Simultane-
ous Phase Unwrapping and Denoising algorithm for phase imaging, referred to as SPUD. The proposed
method relies on the least-squares Discrete Cosine Transform (DCT) solution for phase unwrapping with
an additional sparsity constraint on the DCT coefficients of the unwrapped solution. Simulation results
with different levels of noise and wrapped phase fringe density reveal the suitability of the proposed
method for accurate phase unwrapping and restoration. When compared to the 2D windowed Fourier
transform filter, SPUD performs better in terms of phase error and execution times. The processing of
experimental data from synthetic aperture radar showed the capability for processing real images, includ-
ing removing phase dislocations. An implementation of the proposed algorithm can be accessed and
executed through a Code Ocean compute capsule.
© 2021 Optical Society of America
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1. INTRODUCTION

Two-dimensional (2D) phase unwrapping is a necessary process
in many applications such as synthetic radar aperture, fringe pro-
jection profilometry, interferometry, magnetic resonance imag-
ing, among others [1–3]. The unwrapping process consists in
retrieving the continuous phase ϕ from its wrapped version ψ,
which lies in the interval (−π, π] [4]. In the noiseless scenario,
phase unwrapping is trivial and straightforward. However, in
practice, ψ is affected by noise, which makes phase unwrapping
difficult and decreases the measurement accuracy [5, 6].

Phase unwrapping has been traditionally approached from
two perspectives [7]. In the classical approach, the goal is to ob-
tain a continuous phase regardless of the presence of noise. Con-
ventional phase unwrapping algorithms such as path-following
approaches [8], quality-guided path-following methods [9, 10],
mask-cut phase unwrapping [11], Flynn’s minimum discon-
tinuity [12], and minimum Lp-norm algorithms [1, 13], follow
this perspective [1, 14]. Quality-guided and Lp-norm phase un-
wrapping algorithms have shown the best performance in the

presence of low-level noise [1], although the computation of
quality maps increases the complexity [15]. Recently, an iter-
ative least-squares-based phase unwrapping method referred
to as CPULSI [16] has proven to be highly suitable even on
extremely noisy phases [5]. However, despite obtaining an ac-
curate continuous phase map, a further denoising stage must
be applied to estimate a phase map suitable for quantitative
measurements [5, 17].

The second perspective includes denoising preprocessing
stages to produce a restored wrapped phase map, followed by
phase unwrapping. For instance, Montresor and Picart [18]
evaluated the performance of state-of-the-art algorithms for
phase data denoising including Wiener filtering [19, 20], Wavelet
thresholding approaches [21, 22], non-local means [23–25],
transform-based block-matching 3D (BM3D) filter [26, 27], 2D
windowed Fourier transform filter (WFF) [10, 28, 29], and the
SPADEDH algorithm [30, 31]. They quantitatively assessed these
algorithms and ranked them according to their performance to
isolate the genuine phase gradients from the noisy wrapped
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phase. In terms of phase errors, WFF outperformed the evalu-
ated methods, followed by the Curvelet Decomposition method,
especially when the noise level is high. Recently, Krishnan et
al. [32] proposed a multi-resolution windowed Fourier analysis
for interferometric phase denoising, referred to as SURE-fuse
WFF. This method proved to outperform its fixed resolution
WFF counterpart. The second perspective has proven to be more
effective for phase data restoration than combining perspective 1
with a further denoising stage [5]. However, most of the denois-
ing algorithms are of parametric and interactive nature, which
could result in time-consuming tunable methods with high com-
putational complexity and long execution times. Also, when
both noise and fringe densities are high, prefiltering may lead to
phase dislocations [16, 17, 33].

An additional third perspective involves simultaneous
unwrapping and denoising. For example, Marroquin and
Rivera [34] proposed a phase unwrapping algorithm that relies
on a generalized least-squares solution with Tikhonov regular-
ization. The introduction of the regularization term resulted in
the reduction of noise and the estimation of missing data regions.
Similarly, Guerriero et al. [35] proposed a regularization scheme
for solving the phase unwrapping as a constrained optimization
problem for a vector field of integers. More recently, Zhuo et
al. [36] proposed a sparse Markov random field approach for
phase unwrapping of Interferometric synthetic aperture radar
(InSAR) data. This perspective is highly suitable for phase un-
wrapping in the presence of noise and missing data regions.
However, these methods use iterative procedures to obtain the
solution, which could result in long execution times.

In this paper, we propose a Simultaneous Phase Unwrapping
and Denoising algorithm for phase imaging, referred to as SPUD.
The method solves the least-squares phase differences using the
Discrete Cosine Transform (DCT) closed solution combined with
a hard-thresholding operation. The method exploits the fact
that the correct phase can be sparsely represented in the DCT
domain. Unlike the methods in the third perspective, SPUD is
a non-iterative algorithm with a computational complexity of
O(N log N), which allows a fast phase restoration compared to
existing iterative methods. Least-squares solutions for phase
unwrapping have been widely used in the literature [1, 2, 37].
However, despite their success, often, the unwrapped phase
still has noise. Several authors have proposed an additional
denoising stage [37], but this increases the complexity of the
method, which is its main appeal.

2. PROBLEM FORMULATION

The goal in 2D phase unwrapping is to estimate the true
phase image φ ∈ RM×N , from a wrapped phase image ψ ∈
(−π, π]M×N defined by

ψ =W {φ} ,′ (1)

whereW{·} is the wrapping operator that performs component-
wise 2π modulo wrapping operation

W = : RM×N → (−π, π]M×N ,

ψ→ mod(φ + π, 2π)− π .
(2)

The proposed formulation relies on two assumptions. The first is
that the desired unwrapped phase and the wrapped phase have
the same local phase differences. Therefore, it is conventional to
define

∆ψx
i,j =W

{
ψi+1,j − ψi,j

}
, ∆ψ

y
i,j =W

{
ψi,j+1 − ψi,j

}
, (3)

as the horizontal and vertical phase differences, respectively.
This assumption has an exact solution by solving a least-squares
algorithm (in the noiseless scenario) [1, 13] or shows desirable
results when the noise present in the differences does not ex-
ceed π, i.e., |ψi+1,j − ψi,j + ηi,j| < π, where ηi,j is the noise of
the horizontal differences. It occurs similarly for vertical dif-
ferences. The second assumption of this work is that the true
phase image is smooth [38]. Therefore, it can be sparsified in
a given transformation T (·), i.e., ||T (φ)||0 = k � MN, where
||x||0 = |{i : xi 6= 0}| with |{·}| as the cardinality of a set, such
that, the `0-norm counts the number of nonzero elements of
x. Additionally, in a noisy phase image, the sparsity property
implies that the relevant information is concentrated in few coef-
ficients, while the power of the noise remains white [39]. Hence,
a least-squares phase unwrapping formulation incorporating
these two assumptions can be expressed as

min

∑
ij
(∆φx

i,j −∆ψx
i,j)

2 + ∑
ij
(∆φ

y
i,j −∆ψ

y
i,j)

2

+ ‖T (φ)‖0 ,

(4)
where ∆φx

i,j and ∆ψx
i,j denote the x-components of the un-

wrapped and wrapped phase gradients, respectively; ∆φ
y
i,j and

∆ψ
y
i,j are their y-components counterparts.

3. PROPOSED METHOD

In this work, we propose a non-iterative method to solve Eq. (4).
In particular, notice that the left side of Eq. (4) is reduced to the
Hunt’s matrix formulation given by,(

φi+1,j − 2φi,j + φi−1,j

)
+
(

φi,j+1 − 2φi,j + φi,j−1

)
= ρi,j , (5)

where,

ρi,j =
(

∆ψx
i,j −∆ψx

i−1,j

)
+
(

∆ψ
y
i,j −∆ψ

y
i,j−1

)
. (6)

Additionally, Eq. (6) can be interpreted as the discretization of
the Poisson’s equation with Neumann boundary conditions

∇2φi,j = ρi,j , (7)

where ∇2 is the Laplacian operator. Therefore, applying the
two-dimensional DCT on the M× N grid to both sides of Eq. (7)
yields

φ̂i,j =
ρ̂i,j

2[cos(πi/M) + cos(π j/N)− 2]
, (8)

where φ̂i,j = T (φi,j) and ρ̂i,j = T (ρi,j) denote the 2-D forward
DCT of φi,j and ρi,j, respectively. The sparsity information can
be exploited using the element-wise hard-thresholding operator
Θλ

hard(.), which can be directly applied in the sparse vector to
reduce the noise [39], i.e, in the DCT domain defined as

Θλ
hard(φ̂i,j) =

0 if | φ̂i,j |6 λ

φ̂i,j, otherwise
. (9)

Finally, the noise-free solution φi,j is obtained by the inverse

DCT of Eq. (9), i.e., φ = T −1
(

Θλ
hard(φ̂i,j)

)
. Notice that the
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mean squared error (MSE) of the true phase and the thresholded
estimation (Eq. (9)), can be written as

E

[∥∥∥φ− T −1
(

Θλ
hard(φ̂i,j)

)∥∥∥2

2

]
=

∑
i,j:|φ̂i,j |6λ

∣∣∣T (φi,j)
∣∣∣2 + σ2

∣∣∣{i, j : |φ̂i,j| > λ}
∣∣∣ ,

(10)

where the first and second terms are, respectively, the bias and
the variance of the thresholded estimation, assuming Gaussian
white noise with variance σ2. Additionally, with a threshold pa-
rameter λ sufficiently close to σ

√
2 log(MN), the MSE is close to

that of an oracle projection, which reduces the variance without
increasing the bias, resulting in an optimal denoising value [40].
Algorithm 1 summarizes the steps explained above.

Algorithm 1. SPUD: Simultaneous Phase Unwrapping and
Denoising Algorithm for Phase Imaging

1: Input: Wrapped phase image ψ and the threshold parame-
ter λ.

2: Method:
3: ρi,j =

(
∆ψx

i,j −∆ψx
i−1,j

)
+
(

∆ψ
y
i,j −∆ψ

y
i,j−1

)
.

4: ρ̂ = T (ρ) . DCT transform
5: φ̂i,j = (ρ̂i,j)/2[cos(πi/M) + cos(π j/N)− 2]
6: φ̂i,j = Θλ

hard(φ̂i,j) . Hard-thresholding operator
7: Output: Restored phase φ = T −1(φ̂)

A. Computational complexity
One of the main advantages of the proposed method is its low
computational complexity since it is a non-iterative algorithm.
Following the SPUD algorithm steps, it can be observed that the
DCT transform has a computational complexity of O(N log N)
and the hard-threshold ofO(N). Therefore, the SPUD algorithm
has a computational complexity of O(N log N).

4. SIMULATIONS FOR PERFORMANCE ASSESSMENT

The performance of the proposed method was evaluated with
numerically simulated data and compared to a denoising plus
phase unwrapping strategy from the second perspective de-
scribed in the introduction. The denoising stage is performed us-
ing the 2D Windowed Fourier Transform filter (WFF) [10, 28, 29],
which was shown to outperform the state-of-the-art denoising
algorithms in terms of phase error [18]. For the phase unwrap-
ping stage, we used the least-squares DCT closed solution. This
method is referred to from now on as WFF+LSPU. We used the
suggested parameter settings for WFF provided in [10].

The motivation for these experiments is to find out if for mild
phase noise can the costly WFF be avoided with an alternative
and simpler approach such as the hard-thresholding in the DCT
domain while simultaneously carrying out phase unwrapping.
For this reason, we do not compare against other noise-robust
phase unwrapping methods, like PUMA [41], that have been
shown to require additional denoising stages [42].

A. Data-set
The data-set was generated from five 256×256 reference phases
(i.e., true phases) using the MATLAB® peaks function which
provides progressive peak-to-valley values. From each reference
phase, we generated 20 noise levels, i.e., 20 noisy wrapped phase

maps with uniformly distributed random noise with progressive
standard deviations σ in the interval 0.1 ≤ σ ≤ 0.5. We consider
low to mild noise levels because higher noise levels increase
rapidly the amount of residues in the wrapped phase [43, 44],
which require more computationally demanding methods that
deal directly with phase residues. In Fig. 1, we show ten of these
phase maps, which summarizes the five fringe densities and
the noise levels 1 and 20. Summing up, there were 100 noisy
wrapped phase maps, which offers a comprehensive phase map
diversity to produce statistics. The threshold parameter for these
simulations was chosen according to λ = σ

√
2 log(MN).

B. Performance assessment
The performance assessment was carried out using three metrics.
The first is the standard deviation of the restored phase error,
which is given by [18],

σε =

√
E [ε2]− E [ε]2 , (11)

where ε = ϕs − ϕr is the phase difference between the simulated
true phase ϕs, and the restored phase map ϕr. E [·] denotes the
expected value. Since the aim of phase restoration is related to
metrology purposes, the standard deviation of phase error is an
important parameter. Ideally, if the evaluated algorithm does
not introduce errors, the simulated phase should be equal to the
restored phase.

The second metric is called the Quality Index and models the
phase degradation as structural distortions instead of errors [46].
The Quality Index is defined as,

Qindex =
σsr

σsσd
· 2µsµr

µ2
s + µ2

r
· 2σsσr

σ2
s + σ2

r
, (12)

where µs and µr denote the mean values of the simulated true
phase and the restored phase map, respectively. σs and σr are
their variances and σsr the covariance. The value of Qindex is
defined to lie in the interval [−1, 1], being 1 a perfect similarity.

The third metric is the peak-signal-to-noise ratio (PSNR), and
it is mostly related to the denoising performance. The PSNR
between ϕs and ϕr is defined by

PNSR = 10 · log10

(
||ϕs||∞ M N
||ϕr − ϕs||2F

)
, (13)

where ||ϕr||∞ denotes the maximum input value of ϕr; || · ||F
is the Frobenius norm and M, N are the number of rows, and
columns, respectively.

C. Simulation results and discussion
Fig. 2 summarizes the performance of the SPUD algorithm and
WFF+LSPU for the entire dataset and the three metrics explained
above. We plot the average values of σε, Qindex, and PSNR for
the 20 simulated noise levels at each fringe density. From Fig. 2
(A), the proposed method showed the best performance in terms
of phase errors compared to WFF+LSPU regardless of fringe
density. Whereas from Figures 2 (B) and (C), the SPUD method
performs at par with respect to WFF+LSPU in terms of Qindex
and PSNR.

To visualize the performance results, in Fig. 3, we summarize
the outputs from the SPUD algorithm and WFF+LSPU for the
different five phase densities and the highest noise level. Both
methods effectively reduced the noise and correctly unwrapped
the phase. However, the phase errors obtained by the proposed
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Fig. 1. Simulated wrapped phase maps for the five fringe densities and the noise levels 1 and 20.
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Fig. 2. Average phase restoration performance results of SPUD and WFF+LSPU. SPUD outperforms WFF+LSPU in terms of (A)
restored phase error (σε), and performs at par with WFF+LSPU in terms of (B) Quality index and (C) PSNR.

Table 1. Quantitative assessment of the phase estimation quality in Fig. 3. In bold typeface the values where SPUD performance
is superior.

SPUD WFF + LSPU

Density σ σε (rad) Qindex PSNR (dB) σε (rad) Qindex PSNR (dB)

1 0.467 0.0059 0.838 56.33 0.0057 0.849 56.36

2 0.479 0.0067 0.878 53.21 0.0092 0.899 53.19

3 0.463 0.0069 0.903 50.95 0.0129 0.916 50.83

4 0.481 0.0058 0.945 48.21 0.0187 0.924 48.19

5 0.476 0.0161 0.925 46.47 0.0266 0.934 46.54

method are lower than the errors obtained from WFF+LSPU.
Note that the phase errors from WFF+LSPU tend to increase
with higher fringe densities at the same noise level, whereas the
phase errors from SPUD remain approximately constant regard-
less of fringe density. Additionally, the errors from SPUD are
randomly distributed throughout the phase map, which is a de-
sired property of denoising methods [24], while the errors from

WFF+LSPU are concentrated near high fringe density regions.
The quantitative results from Fig. 3 are shown in Table 1 for
the three performance metrics. As in the average performance
scores, SPUD outperforms WFF+LSPU in terms of phase error σε,
and has a comparable performance with respect to WFF+LSPU
in terms of Qindex and PSNR. The high Qindex and PSNR values
show the restoration capabilities of both methods.



Research Article Applied Optics 5

Noise level 20

D
en

si
ty

 1
D

en
si

ty
 2

D
en

si
ty

 3
D

en
si

ty
 4

D
en

si
ty

 5

-5 0 5

Reference phase

-10 0 10-10 0 10 -10 0 10

-20 0 20

-20 0 20

-20 0 40

SPUD WFF+LSPU

-5 0 5 -5 0 5

-20 0 20 -20 0 20

-20 0 20 -20 0 20

-20 0 40 -20 0 40

Error - SPUD Error - WFF+LSPU

-0.6 0 0.6-0.6 0 0.6

-0.6 0 0.6-0.6 0 0.6

-0.6 0 0.6 -0.6 0 0.6

-0.6 0 0.6 -0.6 0 0.6

-0.6 0 0.6 -0.6 0 0.6

Fig. 3. 2D representation of the SPUD and WFF+LSPU performance for the five phase densities and the noise level 20. The
SPUD error maps are smoother and the errors are randomly distributed, whereas the WFF+LSPU error maps concentrate high
errors in the vicinity of high density fringes.

Table 2. Execution time comparison for different array sizes.
Time measurements in seconds.

Array Size

(pixels)

SPUD

(double

precision)

WFF+LSPU

(double

precision)

WFF (GTX295

GPU, single

precision)*

256× 256 0.0069 24.7215 0.25

512× 512 0.0857 104.2615 0.93

1024× 1024 0.2326 755.8024 3.60

* These values are the execution times from processing
a fringe pattern image of the same size with WFF, as
reported in Ref. [45].

D. Execution time assessment
From the above experiments, it can be concluded that the SPUD
method obtains a comparable result with WFF+LSPU. However,

the main advantage of the proposed method is its low computa-
tional complexity. To illustrate that, we evaluate the execution
time of SPUD and WFF+LSPU on a personal computer (PC)
with Windows 7 (2.4 GHz i7 intel processor, 8 GB RAM) and
MATLAB R2017a. In this experiment, we use three phase maps
with the same phase density and noise level, but with different
sizes (number of pixels). In Table 2 we show the execution time
results for both methods in the phase restoration of array sizes:
256× 256, 512× 512, and 1024× 1024. It can be nothed that
WFF+LSPU is several orders of magnitude slower than SPUD,
and this is mainly due to the high complexity in the denoising
stage with WFF. However, since there are GPU implementations
of WFF, we include the execution times for the processing of
fringe patterns of the same size as reported in Ref. [45]. Even in
this scenario, the non-optimized MATLAB implementation of
the proposed method in double precision (that includes denois-
ing and unwrapping) is one to two orders of magnitude faster
than the GPU implementation of WFF in single precision (only
the denoising stage without unwrapping).
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Fig. 4. Phase unwrapping by SPUD from an interferomet-
ric wrapped phase of size 1591× 561 pixels. (A) Wrapped
phase. (B) Unwrapped phase. (C) Re-wrapped values of the
unwrapped phase compared with (A). (D) Mesh of the un-
wrapped phase. The red box indicates a region of phase dislo-
cations, with a zoomed view.

5. EXPERIMENTAL RESULTS

We evaluated the SPUD algorithm on two wrapped phases from
InSAR provided as open-source data in Refs. [47, 48]. In Fig. 4(A),
we show the fist interferometric phase of size 561× 1591 pix-
els, which corresponds to the shape of a volcano. Note that
the phase map contains regions of phase dislocations. In this
situation, filtering by WFF has proven to be unhelpful [14]. Fol-
lowing the threshold formula, we set λ = 0.5

√
2 log(MN) for

these experiments. In Fig. 4(B), we show the unwrapped and
restored phase map obtained by SPUD. Since the dynamic range
of the unwrapped result is large, we re-wrap the unwrapped
values for visual comparison (Fig. 4(C)), as suggested in Ref. [1].
The proposed algorithm removes the regions of phase disloca-
tions from the restored phase map by the smoothing constraint
without increasing the computational complexity. Additionally,
the unwrapped solution seems congruent with the original data,
and no propagation errors are evident. In Fig. 4(D), we show
the mesh of the unwrapped phase. The processing time in this
experiment was 0.504 s.

In Fig. 5(A), we show the second wrapped phase map of
size 1065 × 2032 pixels, which corresponds to a region over
Phoenix, Arizona, USA, scanned by the Canadian satellite sys-
tem, RADARSAT-2. The phase map describes a complex to-
pographic area and exhibits noise. In Fig. 5(B), we show the

(D)

(A)

(B)

(C)

-10 0 10

Fig. 5. Phase unwrapping by SPUD from an interferomet-
ric wrapped phase of size 1065× 2032 pixels. (A) Wrapped
phase. (B) Unwrapped phase. (C) Re-wrapped values of the
unwrapped phase compared with (A). (D) Mesh of the un-
wrapped phase.

unwrapped and restored phase with the proposed method. The
re-wrapped phase map is shown in Fig. 5(C). Observe that the
effect of noise was minimized with the structural information
substantially preserved. The mesh of the unwrapped phase is
shown in Fig. 5(D). The processing time for this experiment was
1.04 s.

6. CONCLUSION

Phase unwrapping in the presence of noise is a difficult problem,
but one that has been traditionally approached from a multi-
stage perspective. In this work, we have proposed a method for
simultaneous 2D phase unwrapping and denoising based on the
least-squares DCT phase unwrapping with an additional spar-
sity constraint on the DCT coefficients. The proposed method
performs better than the state-of-the-art phase denoising method
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Windowed Fourier Filtering in terms of phase error, and at par in
terms of noise removal. However, the computational complexity
of the proposed method is sufficiently low, resulting in several
orders of magnitude faster than the benchmark. The processing
of experimental data from synthetic aperture radar showed the
capability for processing real images, including removing phase
dislocations. Future work involves testing the algorithm in other
phase retrieval scenarios affected by noise.
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