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Abstract—The problem of phase unwrapping from a
noisy and also incomplete wrapped phase map arises in
many optics and image processing applications. In this
work, we propose a noise-robust approach for processing
regional phase dislocations. Our approach combines phase
unwrapping and sparse-based inpainting with dictionary
learning to recover the continuous phase map. The method
is validated both using numerically simulated data with
strong additive white Gaussian noise and phase dislocations;
and experimental data from fringe projection profilometry.
Comparisons with other phase inpainting method referred
to as PULSI+INTERP, show the suitability of the proposed
method for phase restoration even in extremely noisy phases.
The error given by the proposed method on the highest level
of noise (RMSE=0.0269 Rad) remains the smallest compared
to the error given by PULSI+INTERP for noise-free data
(RMSE=0.0332 Rad).

Index Terms—Phase Unwrapping, Image Restoration, 3-D
Reconstruction, Dictionary Learning, Sparse representation

I. Introduction

Phase unwrapping is a necessary process in many
applications such as synthetic radar aperture, fringe
projection profilometry, interferometry, magnetic reso-
nance imaging, among others. The unwrapping process
consists of retrieving the true continuous phase from
its wrapped version, typically in the interval (−π, π] as
recovered using a phase recovery method [1]. Successful
phase recovery occurs when the recovered wrapped
phase is such that the maximum phase change between
sample points is < π [2]. When this condition is not
met phase residues appear, which are associated with
local inconsistencies of the phase map [3], [4]. These
inconsistencies often arise in regions where the fringe
pattern breaks due to structural discontinuities in the re-
covered wrapped phase leading to phase dislocations. In
practice, we have to deal not only with phase dislocations
but also with noise. These circumstances make phase
unwrapping a difficult task and decreases the accuracy
of the measurement.

Conventional phase unwrapping algorithms such as
quality guided approaches [5], Flynn’s minimum dis-
continuity [6], and minimum Lp-norm algorithms [7],

have proven to be effective when dealing with noisy
phase data, but not further with local dislocations [8], [9].
Recently, many algorithms have been proposed for effec-
tively processing phase dislocations based on inpainting
approaches. For instance, Meng et al. [10] proposed an
exemplar-based algorithm to process phase dislocations
before unwrapping. This method relies on modulation to
detect and mask out the local structural discontinuities.
Similarly, Xia et al. [8] proposed a method, referred to
as PULSI+INTERP, based on combined unwrapping and
inpainting by interpolation approaches for processing
large dislocation areas. This method exhibits a high per-
formance for noise-free data. However, its effectiveness
is limited when dealing with high-noise levels. In this
work, we propose a noise-robust approach for process-
ing regional phase dislocations. Our approach combines
phase unwrapping and sparse inpainting with dictio-
nary learning to recover the continuous phase maps.

This paper is organized as follows. In Section 2, the
theory for the proposed method is described. In Section
3, the method is validated using a simulation of strong
additive white Gaussian noise and phase dislocations.
An application of the proposed method in experimental
data is also provided. Finally, in Section 4 we conclude
and outline future work.

II. Method

An overview of the proposed approach is shown in
Fig. (1). The input to the method is the wrapped phase
ψ, and a binary mask M with ones in every pixel cor-
responding to a phase dislocation and zeros elsewhere.
Similar to Ref [10], we use the phase modulation to
obtain M. In the first stage, M is applied on ψ to mask
out the phase dislocation. The continuous phase map
ϕ is obtained by a phase unwrapping algorithm based
on least-squares and iterations referred to as PULSI [11].
We use PULSI to unwrap noise-free or low-noise phase
data. However, in the presence of high-noise levels we
extend our method to the calibrated version of PULSI
referred to as CPULSI [12], which has proven to be more
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Fig. 1: Block diagram illustrating the proposed method. ψ, M and ϕ are the input wrapped phase, a binary mask
indicating the phase dislocations and the unwrapped phase map, respectively. The restored phase is denoted as ϕ̂.
The other variables are intermediate outputs of every stage; their meaning is given in the text.

robust than other unwrapping methods on extremely
noisy phases. In the second stage, a patch-based sparse
representation of ϕ is generated. In the third stage, a
dictionary is trained from the image patches and starting
from a predefined basis such as the Discrete Cosine
Transform (DCT). M is used to avoid the pixels of the dis-
locations during the dictionary learning process. Finally,
the algorithm predicts the values of the missing regions
by constructing an approximate phase map ϕ̂. Note,
ϕ̂ is a denoised and inpainted version of the original
continuous phase map ϕ. The proposed approach is
referred to as PULSI+DLKSVD.

A. Sparse representation of a signal

Sparse and redundant representations are mathemat-
ical tools for modeling signals and expressing them
more compactly, which leads to improvements in sig-
nal restoration [13]. In a sparse representation, an n-
dimensional signal y ∈ Rn is a linear combination of a
small number of signals called atoms from a prespecified
and redundant dictionary D ∈ Rn×m

y ≈ Dx , (1)

where x ∈ Rm is a sparse vector, i.e., ‖x‖0 << n being
‖.‖0 the `0-norm which stands for the number of non-
zero elements. D has m elements or atoms of length n,
D = [d1, d2, ..., dm]. Thus, we aim to find the sparsest
representation x, and the standard way to address this
optimization problem is by imposing a sparsity con-
straint

min
x
‖y−Dx‖2

2, s.t. ‖x‖0 ≤ T0 , (2)

where ‖.‖2 is the `2-norm and T0 limits the sparsity
of the representation coefficients. Note, computing the
optimal solution to Eq. (2) is known to be NP-hard
[14], and it is usual to replace the `0-norm by the `1-
norm solved by greedy algorithms such as Orthogonal
Matching Pursuit (OMP) [15], or the Least Absolute
Shrinkage and Selection Operator (LASSO) [16].

B. Sparse representation based on patches
It is common to use a set of overlapping patches as the

basic unit of sparse representation for images [17]–[19]
with the objective of learning the sparse representation
of each patch and to learn the dictionary. Let ϕ ∈ Rn

to be a vector representation of an unwrapped phase
with n elements (pixels), and ϕk ∈ Rb a

√
b×
√

b patch
of the continuous phase in the k-th position of the ϕ
vector, for k = 1, 2, 3, ..., l, where l is the number of
patches. Moreover, let Rk(.) be the operator that extracts
the patches of a vector, so that ϕk = Rk(ϕ). Then, the
transpose RT

k (.) recovers the original unwrapped phase
ϕ based on the set of patches {ϕk}l

k=1 as

ϕ =

(
l

∑
k=1

RT
k Rk

)−1( l

∑
k=1

RT
k ϕk

)
. (3)

With each vector patch ϕk and given a dictionary D
our objective is to find the sparse vector representation
zk such that, based on Eq. (1), ϕk = Dzk. With this
condition, we are representing the phase ϕ sparsely with
the set of sparse vectors {zk}l

k=1 of patches of the phase,
thus Eq. (3) can be rewritten as

ϕ =

(
l

∑
k=1

RT
k Rk

)−1( l

∑
k=1

RT
k Dzk

)
, (4)

where ϕk is replaced by Dzk.

C. Dictionary Learning
The selection of the dictionary is an important part

because the sparse representation of the unwrapped
phase rely on it. In the literature, there are three types
of dictionaries: prebuilt, adapted, and learned dictionar-
ies. With the latter, there have been many advances to
learning a redundant dictionary from the set of training
patches of the image [20] and these learned dictionaries
have proven successful for inpainting and denoising.
Then, the dictionary and the sparse patches are learned
simultaneously with the optimization problem

min
D, zk

l

∑
k=1
‖ϕk −Dzk‖2

2, s.t. ‖zk‖0 ≤ T0 , (5)



where ϕk are each b-dimensional patch of phase ϕ
represented sparsely as zk with the dictionary D. This
dictionary comes from an empirical base rather than
from some theoretical model being learned from the
same signal, but for this learning process, a redundant
prior dictionary is used. In this work, we use the discrete
cosine transform (DCT) to build a prior dictionary [21],
which has proven to be a plausible selection for image
recovery using adaptive sparse reconstructions [22], [23].

The proposed method relies on the original continuous
phase ϕ and a mask M. The main idea of using a
mask is to avoid to learn from the data that belong to
the dislocation zones. In this way, M is a binary mask
with zeros in the location of the dislocations which also
indicates pixels to restore through inpainting. Using both
ϕ and M, we extract l phase patches ϕk and l mask
patches Mk with the Rk(.) operator, so a patch with
dislocations is not used in the learning process.

In this work, we used the K-SVD algorithm to learn
the dictionary and the OMP algorithm to obtain the zk
sparse vectors. The dictionary is updated minimizing the
error

Ek = ∑
k
‖Mk(ϕk −Dzk)‖2

2 . (6)

The optimal sparse representation ẑk is found using a
fixed atom base

ẑk = [dT
mMkdm]

−1dT
mMkϕk . (7)

The sparse vector is fixed, and the dictionary atoms
are updated with

d̂m = arg min
dm ,zk

‖RT
k Mk(Ek − dmzk)‖2

2 . (8)

This process is performed iteratively until an error cri-
terion is met or a certain amount of coefficients ẑk
different from zero (T0) are found to ensure a sparse
representation.

D. Predicting Values and Restoration

With the sparse representation ẑk of all patches and the
learned dictionary with the above procedure, we recover,
or reconstruct, the unwrapped phase ϕ through the best
approximation ϕ̂ using Eq. (4)

ϕ̂ =

(
l

∑
k=1

RT
k Rk

)−1( l

∑
k=1

RT
k D̂ẑk

)
, (9)

and because there is overlapping between patches, an
average reconstruction strategy is performed with this
equation.

III. Experiments and Results

A. Computer simulations

We evaluated the performance of the proposed
method on numerically simulated data. The MATLAB@
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Fig. 2: (a) Original true phase, (b) wrapped phase map
with dislocations, (c) masked wrapped phase, and (d)
unwrapped phase from PULSI.

peaks function of 512×512 pixels is used to compute
the true phase (i.e., the continuous phase). This phase is
wrapped using the arctangent formula. To simulate the
phase dislocations, we apply a strong moving average fil-
ter of 13×13 pixels to the sine and cosine of the wrapped
phase. Then, the resulting phase map is wrapped anew
into the interval [−π, π]. The same average filter must
be applied to the original true phase to evaluate the
performance of the method correctly. Fig. (2a) shows
the original continuous phase, and Fig. (2b) shows the
simulated wrapped phase with dislocations. Note, there
are two main dislocations located in the upper and lower
lobes of the phase map in Fig. (2b), where the fringe
density is high compared to the size of the filtering
kernel. In Fig. (2c), we show the masked areas of the
dislocated phase maps. Finally, the unwrapped phase
from PULSI is shown in Fig. (2d), where the masked
regions are visible.

In Fig. (3a), we show the restored phase by applying
PUSLI+DLKSVD to the phase in Fig. (2d). In order to
evaluate the suitability of the proposed method, we
compare our results with PULSI+INTERP in Fig. (3b).
The resulting phase is in agreement with the original
true phase in Fig. (2a). Fig. (3c) and Fig. (3d) show
the error maps corresponding to the estimated phase
regions from Fig. (3a) and Fig. (3b), respectively. For a
quantitative assessment of the phase estimation quality,
we computed the root-mean-square error (RMSE) in the
masked areas. Here, the error given by PUSLI+DLKSVD
(RMSE = 0.0170 Rad) is the lowest compared to
PULSI+INTERP (RMSE = 0.0332 Rad).

To evaluate the performance of the proposed for noisy
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Fig. 3: Restored phases with (a) PUSLI+DLKSVD and (b)
PULSI+INTER. Phase errors with (c) PUSLI+DLKSVD
and (d) PULSI+INTERP.

data, the wrapped phase map from Fig. (2b) is corrupted
by additive white Gaussian noise with noise standard
deviation σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. For σ ≤ 0.5,
we use PULSI for phase unwrapping. Otherwise, we use
CPULSI to obtain the unwrapped phase map. The quan-
titative assessment of the phase restoration is shown in
Fig. (4), in which we compare the obtained phase errors
in the masked areas with the error from PULSI+INTERP
in Fig. (3d). In addition, we show the restored phase
maps for σ = 0.5, and σ = 0.9, as well as their
corresponding phase errors. Note, the proposed method
shows the best performance even on high noise levels.

B. Experimental verification

The proposed approach was applied to experimental
phase maps obtained from human skin measurements.
The experimental setup consists of two parts: a projec-
tion system and an observation system. The projection
system was an LED pattern projector (Optoengineering
LTPRHP3W-W) that contains a stripe pattern of 200 lines
with a line thickness of 0.02 mm with a projection lens of
8-mm focal length. The observation system was a CMOS
camera (Basler acA1600-60gm 1602x1202 pixels) with an
objective lens of 16-mm focal length.

The object under inspection is the forearm of a test
subject shown in Fig. (5a). The processing of the data is
based on Fourier transform Profilometry (FTP) to extract
the wrapped phase in Fig. (5b). In this application,
errors can be attributed to the hair distribution which
introduces local dislocations and noise to the recovered
phase. The red boxes exhibit areas on which dislocations
can be observed. The wrapped phase is masked and
unwrapped using PULSI. The result is shown in Fig. (5c).
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Fig. 4: Performance of the proposed for data corrupted
by additive white Gaussian noise with noise standard
deviation σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

The final restored phase with PULSI+DLKSVD is shown
in Fig. (5d). As can be observed, the restoration is opti-
mal, and the effect of the hair distribution is minimized.

Run-time of the proposed method using, e.g., a 512×
512 phase map obtained from human skin measurement
is 438.9423 s (7.32 min), including the dictionary learning
process. However, we can use the learned dictionary
with other similar images without having to learn a new
dictionary again. Then, using another similar phase map
and the same learned dictionary, computation time is
approximately four times faster (105.0148 s) than in the
dictionary learning process.

IV. Conclusions

In this paper, we proposed a noise-robust approach
for processing regional phase dislocations, based on
unwrapping and sparse dictionary learning-based in-
painting approaches to recover the continuous phase
maps. Computer simulations, as well as experimental
verification, show the suitability of the proposed method
for phase restoration even in extremely noisy phases.
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Fig. 5: (a) Captured fringe image, (b) wrapped phase
map, (c) unwrapped phase from PULSI, and (d) restored
phase map.

References

[1] S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither
we are?,” Optics and lasers in engineering, vol. 48, no. IMAC-
REVIEW-2009-001, pp. 133–140, 2010.

[2] D. J. Bone, “Fourier fringe analysis: the two-dimensional phase
unwrapping problem,” Applied optics, vol. 30, no. 25, pp. 3627–
3632, 1991.

[3] M. A. Gdeisat, D. R. Burton, F. Lilley, M. Arevalillo-Herráez, and
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